5,316 research outputs found

    Efficient generation of distant atom entanglement

    Full text link
    We show how the entanglement of two atoms, trapped in distant separate cavities, can be generated with arbitrarily high probability of success. The scheme proposed employs sudden excitation of the atoms proving that the weakly driven condition is not necessary to obtain the success rate close to unity. The modified scheme works properly even if each cavity contains many atoms interacting with the cavity modes. We also show that our method is robust against the spontaneous atomic decay.Comment: 4 pages, 5 figure

    Entangled-state cycles from conditional quantum evolution

    Get PDF
    A system of cascaded qubits interacting via the oneway exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state), or executes a sustained entangled-state cycle - random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.Comment: 12 pages, 10 figure

    Quantum Teleportation of Light

    Full text link
    Requirements for the successful teleportation of a beam of light, including its temporal correlations, are discussed. Explicit expressions for the degrees of first- and second-order optical coherence are derived. Teleportation of an antibunched photon stream illustrates our results.Comment: 4 pages, 5 figure

    Teleportation with insurance of an entangled atomic state via cavity decay

    Full text link
    We propose a scheme to teleport an entangled state of two Λ\Lambda-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many Λ\Lambda-type atoms trapped in a cavity.Comment: 8 pages, 5 figure

    Effect of atomic beam alignment on photon correlation measurements in cavity QED

    Full text link
    Quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a standing-wave cavity are carried out. The delayed photon coincident rate for forwards scattering is computed and compared with the measurements of Rempe et al. [Phys. Rev. Lett. 67, 1727 (1991)] and Foster et al. [Phys. Rev. A 61, 053821 (2000)]. It is shown that a moderate atomic beam misalignment can account for the degradation of the predicted correlation. Fits to the experimental data are made in the weak-field limit with a single adjustable parameter--the atomic beam tilt from perpendicular to the cavity axis. Departures of the measurement conditions from the weak-field limit are discussed.Comment: 15 pages and 13 figure

    From quantum feedback to probabilistic error correction: Manipulation of quantum beats in cavity QED

    Full text link
    It is shown how to implement quantum feedback and probabilistic error correction in an open quantum system consisting of a single atom, with ground- and excited-state Zeeman structure, in a driven two-mode optical cavity. The ground state superposition is manipulated and controlled through conditional measurements and external fields, which shield the coherence and correct quantum errors. Modeling of an experimentally realistic situation demonstrates the robustness of the proposal for realization in the laboratory
    • …
    corecore